Frage:
wie wird Plastik hergestellt?
anonymous
2007-05-01 09:37:34 UTC
wie wird Plastik hergestellt?
Sechs antworten:
LuckyConny
2007-05-01 09:39:43 UTC
Aus Erdöl!
Karlchen *
2007-05-01 11:38:09 UTC
Ich liebe es wenn hier welche versuchen ihre Doktorarbeit zu schreiben und dann auf Wiki verweisen. denke ein Link reicht und der Fragesteller kann da selber nach schauen und erfährt noch mehr.

Kunststoffe werden in chemischen Prozessen aus Kohlenwasserstoffen, Kohle, Erdöl hergestellt.

aber auch aus vorhandenen über die Rückgewinnung.



siehe auch Wiki

http://de.wikipedia.org/wiki/Kunststoff



http://www.chemie.fu-berlin.de/chemistry/kunststoffe/kueche.htm



-
anonymous
2007-05-01 09:43:17 UTC
Ein neues Verfahren zur Herstellung von biologisch abbaubarem Plastik ist an der Cornell Universität, USA, entwickelt worden. Der Schlüssel zu dieser "grünen Lösung" des zunehmenden Müllproblems ist Plastik, das aus Sojaproteinen und speziellen Pflanzenfasern hergestellt wird. Der neue Werkstoff kann Plastikteile im Autoinnenraum, in Zügen, Computern, Verpackungen usw. ersetzen. Außerdem ist das Material als Dämmstoff gegen Hitze und Geräusche geeignet. Im Gegensatz zu herkömmlichem Plastik (hergestellt aus teurem Erdöl) besteht der neue Werkstoff aus nachwachsenden Rohstoffen und ist kompostierbar. Getestet wurden bisher Pflanzenfasern aus Jute, Ananas, Sisalagave und Banane. Noch ist der Werkstoff teurer als herkömmliches Plastik, könnte aber konkurrenzfähig werden, wenn er in Masse produziert würde.
Chilluminati pétillante ¸.•*´¨♥
2007-05-01 09:59:13 UTC
Auf dieser Seite hast Du diverse Informationen zu Polymeren und Kunststoffen.



http://www.seilnacht.com/Lexikon/polymere.html
Don_Isidoro®
2007-05-01 09:49:00 UTC
Der französische Chemiker Henri Victor Regnault war 1835 der erste, der im Gießener Laboratorium von Justus von Liebig Vinylchlorid herstellte und bemerkte, dass sich daraus bei längerer Einwirkung von Sonnenlicht ein weißes Pulver – Polyvinylchlorid – bildete, konnte die Bedeutung seiner Entdeckung jedoch nicht erkennen.



Mit ein Grund für den heutigen Einsatz von Polyvinylchlorid ist sicher die Verwendung eines anderen Stoffes und ein daraus entstehendes Abfallproblem. Mit dem Aufblühen der chemischen Industrie wurde der Rohstoff Natronlauge, der auch heute für viele Prozesse und Verfahren eingesetzt wird, in immer größeren Mengen hergestellt. Die wichtigsten Einsatzbereiche der Natronlauge sind die Verarbeitung in der Seifenindustrie, die Celluloseherstellung und die Gewinnung von Aluminium aus Bauxit. Die Natronlauge wurde mit Hilfe elektrolytischer Zersetzung aus Kochsalz (Natriumchlorid) gewonnen, übrig blieb dabei Chlor und Wasserstoff.



1912 erhielt der deutsche Chemiker Fritz Klatte von der Chemischen Fabrik Griesheim, später ein Produktionsort der Firma Hoechst, den Auftrag, für den in großen Mengen vorhandenen Rohstoff Ethin (Acetylen) neue Umsetzungsprodukte zu finden. Auch er setzte für seine Versuche, wie zuvor Regnault, Glasgefäße mit Vinylchlorid und verschiedenen Zusätzen dem Sonnenlicht aus. Seine Forschungen führten 1912 zur Synthese von Vinylchlorid aus Acetylen und Chlorwasserstoff. 1913 erhielt Klatte das Patent auf die „Polymerisation von Vinylchlorid und Verwendung als Hornersatz, als Filme, Kunstfäden und für Lacke“. Er legte damit die Grundsteine für die Herstellung von PVC, das vorerst nur die Bindung von Chlor ermöglichte und so die Lagerung in großen Mengen gestattete. Mit der Rohstoffknappheit während und nach dem Ersten Weltkrieg wurden die Anstrengungen verstärkt, PVC als Rohstoff zu nutzen, um teure Rohstoffe durch kostengünstige Materialien zu ersetzen. Es kam jedoch erst Ende der 1920er Jahre zu weiteren Anwendungen. 1928 erfolgte die großtechnische Auswertung durch Produktion in den USA und 1930 in Rheinfelden durch die BASF; 1935 nahm die I.G. Farben die PVC-Produktion auf.



1935 gelang in Bitterfeld die Plastifizierung von Hart-PVC bei Temperaturen von 160 Grad Celsius: erste Produkte waren Folien und Rohre. Letztere wurden 1935 in Bitterfeld und Salzgitter verlegt. Eine Produktmarke dieser Zeit, die umgangssprachlich auch das Ende der im Namen enthaltenen IG-Farben noch eine Zeit lang überlebte, war das Igelit. Nach 1945 war PVC der meist produzierte Kunststoff der Welt.



Die Entwicklung der Chlorchemie kann somit auf die Notwendigkeit zurückgeführt werden, die bei der Herstellung von Natronlauge durch elektrolytische Zersetzung von Natriumchlorid entstehenden großen Mengen an Chlor zu lagern und einer Verwendung zuzuführen. Möglich wurde dies durch die großtechnische und kommerzielle Erschließung des thermoplastischen Materials PVC.
★•ஐ MR. IÖS ஐ•★
2007-05-01 09:40:25 UTC
Kunststoffe werden generell durch schrittweises Aneinanderfügen von Monomeren zu langen Ketten – den Polymeren – hergestellt, wobei grundsätzlich zwischen Kettenpolymerisation (auch Kettenreaktion) und Stufenpolymerisation (auch Stufenreaktion) unterschieden wird.



Kettenpolymerisationen



Bei einer Kettenpolymerisation beginnt das Wachstum mit einem Molekül, an das sukzessive weitere Monomere addiert werden. Das die Polymerisation startende Molekül nennt man Initiator, das auf diesen aufwachsende heißt Monomer. Die Zahl der Monomere, aus denen das Polymer letztendlich besteht, ist der Polymerisationsgrad. Der Polymerisationsgrad kann durch das Verhältnis von Monomer zu Initiator eingestellt werden. Mathematisch wird er durch die Mayo-Gleichung abgeschätzt.



Radikalische Polymerisation



Bei der radikalischen Polymerisation werden die Wachstumsreaktionen durch Radikale initiiert und fortgepflanzt. Sie ist verglichen mit anderen Kettenreaktionen unempfindlich, leicht zu kontrollieren und liefert schon bei recht kleinen Umsätzen hohe Polymerisationsgrade. Sie wird daher vor allem bei der Herstellung von billigen Kunststoffen, wie LD-PE, PS oder PVC, eingesetzt.



Eine Gefahr bei diesem Verfahren stellt die freiwerdende Polymerisationswärme dar. Die radikalische Polymerisation ist exotherm, das heißt bei der Reaktion wird Wärme frei. Diese Wärme erzeugt, wenn sie nicht abgeführt wird, weitere Radikale, so dass sich die Reaktion selbst beschleunigen kann. Im Extremfall kann eine solche „Selbstbeschleunigung“ zur Überlastung des Reaktormaterials und damit zu einer thermischen Explosion führen.



Ionische Polymerisation



Bei ionischen Polymerisationen werden die Wachstumsreaktionen durch ionische Spezies initiiert und fortgepflanzt. Die wachsenden Ketten sind langlebiger (mehrere Stunden bis Tage) als ihre radikalischen Analoga (Lebensdauer etwa 10-3s), man spricht in diesem Zusammenhang auch von sogenannten lebenden Polymeren. Daher kann man nach Abschluss einer Polymerisation auf die noch lebenden, das heißt zur Polymerisation befähigten Ketten, ein weiteres Monomer aufgeben und so ein erneutes Wachstum fortführen.



Polymere, deren Ketten aus zwei oder mehr unterschiedlichen Monomertypen bestehen, nennt man Copolymere. Findet man in einem Copolymeren lange Blöcke des einen Monomers, gefolgt von Blöcken des anderen, spricht man von Blockcopolymeren. Für eben solche speziellen Anwendungen wird die ionische Polymerisation angewandt. Ein Beispiel sind die synthetischen Gummis Acrylnitril-Butadien-Kautschuk (NBR) und Styrol-Butadien-Kautschuk (SBR), die bei der Herstellung von Autoreifen Verwendung finden. Nachteil dieses Verfahrens ist seine hohe Empfindlichkeit gegenüber Verunreinigungen, Wasser und Sauerstoff. Ionische Polymerisationen sind daher aufwendiger und kostenintensiver als die radikalische Polymerisation.



Metallorganische Katalysatoren



Diese Polymerisationen finden in Gegenwart von Katalysatoren statt. Beim Katalysator handelt es sich um einen Metallkomplex (Verbindung aus Metallatomen, umgeben von weiteren Spezies), der in der Lage ist, die wachsende Kette zu binden. Die Addition weiterer Monomere geschieht durch Einschub (Insertion) des Monomers zwischen wachsende Kette und Katalysatorspezies. Resultat ist ein höherer Ordnungsgrad der entstehenden Polymere (siehe Taktizität) sowie ein geringerer Verzweigungsgrad. Aufgrund dieser reguläreren Struktur erfolgt auch die Packung der einzelnen Ketten im Festkörper effizienter, der Kunststoff wird dichter. Die zur Zeit industriell wichtigste Katalysatorklasse ist die der Ziegler-Natta-Katalysatoren. Eine Rolle spielen sie zum Beispiel bei der Herstellung von Polyethylen.



Beim Low-Density-Polyethylen (LD-PE) handelt es sich um in der Gasphase polymerisiertes Ethen mit geringem Ordnungsgrad, vielen Seitenverzweigungen und geringer Dichte. Diesen Kunststoff findet man vor allem als transparente oder gefärbte Verpackungsfolie von Getränkeflaschen, Büchern, CDs etc.



High-Density-Polyethylen wird mit einem metallorganischen Katalysator im Ziegler-Natta-Verfahren hergestellt. Es resultiert ein Polymer mit hohem Ordnungsgrad, wenigen Verzweigungen und hoher Dichte. Dieser Kunststoff findet beispielsweise Verwendung als Material für Autotanks, Benzinkanister etc.



Stufenpolymerisationen



Im Gegensatz zur Kettenpolymerisationen erfolgt in Stufenpolymerisationen die Bildung der Polymere nicht durch Initiation einer wachsenden Kette, die weiter sukzessive Monomere addiert, sondern durch direkte Reaktion der Monomere untereinander. Diese Reaktion kann unter Freisetzung eines Nebenprodukts wie Wasser (Polykondensation) oder durch einfache Addition der Monomere zu einer neuen Spezies (Polyaddition) erfolgen.



Polykondensation



Bei Polykondensationen erfolgt die Bildung der linearen Kette durch intermolekulare Reaktion bifunktioneller Polymere unter Abspaltung einer kleineren Spezies, wie beispielsweise Wasser.



Carbonsäuren reagieren mit Aminen zu Amiden. Setzt man Moleküle ein, die zwei Carbonsäuregruppen tragen, kann eines dieser Moleküle mit zwei Aminen reagieren. Es entsteht so ein Polymer aus drei Monomeren (eine Carbonsäureeinheit, zwei Amine). Tragen die eingesetzten Amine auch wieder zwei Amingruppen, kann die zuvor entstandene Spezies wiederum mit zwei Carbonsäuremolekülen reagieren usw. Die so entstehenden Polymere können sich dann auch noch weiter untereinander verbinden, so dass der Polymerisationsgrad entscheidend von der Reaktionsdauer abhängt.



Durch Reaktion von Dicarbonsäuren mit Diolen (Dialkohol) werden so Polyester hergestellt. Unter den wichtigsten durch Polykondensation hergestellten Kunststoffen sind Polyethylenterephthalat (PET), ein Polyester, Nylon, ein Polyamid und Bakelit, ein Duroplast.



Polyaddition



Bei Polyadditionen erfolgt die Bildung des Polymers durch Addition der einzelnen Monomere untereinander, ohne die Bildung von Nebenprodukten.



Isocyanate reagieren mit Alkoholen in einer Additionsreaktion zu sogenannten Urethanen. Auch hier gilt: Setzt man bifunktionelle Monomere ein, erfolgt die Bildung langer linearer Ketten. Auf diese Weise hergestelltes Polyurethan wird für Armaturenbretter, Lacke, Klebstoffe etc. verwendet. Setzt man der Polymerisationsmischung Wasser zu, reagiert dieses mit den Isocyanaten zu Aminen und Kohlenstoffdioxid. Das in der Mischung freiwerdende CO2 wird in Form von Bläschen in den Kunststoff eingeschlossen, so dass man einen Schaumstoff erhält. Polyurethanschaumstoff wird für Matratzen, Sitzmöbel, Schwämme, etc. verwendet.



Additive



Kunststoffen werden im Verlauf des Herstellungsprozesses sogenannte Additive zugesetzt (Compoundierung). Sie dienen der genauen Einstellung der Materialeigenschaften auf die Bedürfnisse der jeweiligen Anwendung und der Verbesserung der chemischen, elektrischen und mechanischen Eigenschaften. Solche mit Zuschlagsstoffen versehene Formmassen werden nach DIN EN ISO 1043 (Thermoplaste) und nach DIN 7708 (Duroplaste) gekennzeichnet.



Weichmacher



Etwa zwei Drittel der weltweit hergestellten Additive werden für die Produktion von Polyvinylchlorid aufgewendet, fast drei Fünftel der hergestellten Additive sind Weichmacher. Sie verringern Sprödigkeit, Härte und Glastemperatur eines Kunststoffes und machen ihn so besser form- bzw. verarbeitbar. Es handelt sich um Stoffe, die in der Lage sind auf molekularer Ebene in den Kunststoff einzudringen und so die Beweglichkeit der Ketten gegeneinander zu erhöhen. Qualitativ kann man sie als „molekulares Schmiermittel“ verstehen. Bis vor wenigen Jahren war Diethylhexylphthalat (DEHP) (synonym: Dioctylphtalat DOP) der am häufigsten verwendete Weichmacher. Dieser stellte sich jedoch als umwelt- und gesundheitsschädlich heraus, weshalb die europäische Industrie inzwischen weitgehend auf seinen Einsatz verzichten will.



Extender verbessern ebenfalls die Verarbeitbarkeit, man spricht deshalb auch von sekundären Weichmachern. Wichtige Extender sind epoxidierte Öle, hochsiedende Mineralöle und Paraffine.



Stabilisatoren



Stabilisatoren dienen der Verbesserung der chemischen Eigenschaften. Sie erhöhen die Lebensdauer des Kunststoffes und schützen ihn vor schädigenden Einflüssen (Oxidation, Strahlung und Wärme bzw. Feuer) in seinem Einsatzgebiet.



Durch Reaktion mit Luftsauerstoff kann sich der Kunststoff verfärben, und die Polymerketten können sich zersetzen oder neu vernetzen. Dies verhindert man durch Zugabe von Antioxidantien, welche die bei der Reaktion entstehenden freien Radikale abfangen (Radikalkettenabbrecher), oder gleich die Bildung der Radikale verhindern (Desaktivatoren). Als Abbrecher setzt man beispielsweise Phenole oder Amine zu, als Desaktivatoren dienen Phosphane und ebenfalls Amine.



Lichtschutzmittel schützen gegen eine Schädigung durch ultraviolettes Licht. Doppelbindungen zwischen Kohlenstoffatomen sind in der Lage, Licht dieser Wellenlänge zu absorbieren, daher sind vor allem Kunststoffe durch UV-Licht gefährdet, die dieses Strukturelement aufweisen (z. B. Polyisopren). Allerdings können aufgrund von Katalysatorrückständen, Strukturfehlern und Nebenreaktionen bei der Verarbeitung praktisch alle Polymere ein Absorptionsvermögen für UV-Strahlung zeigen. Diese induziert die Bildung von freien Radikalen im Material, die Nebenreaktionen, wie Zerfall der Kette und Vernetzungen einleiten. Es existieren grundsätzlich drei Wege eine Schädigung zu verhindern: Reflexion des Lichts, Zusatz von das Licht absorbierenden Stoffen und Zusatz von Radikalfängern. Wichtige Lichtschutzmittel sind Ruß, der die Strahlung absorbiert, σ-Hydroxybenzophenon, das die Energie in Infrarotstrahlung umwandelt und Dialkyldithiocarbamate, die UV-Licht absorbieren und als Radikalfänger fungieren.



Kunststoffe sind empfindlich gegenüber Wärmeeinwirkung. Oberhalb einer für das Material charakteristischen Temperatur (Zersetzungstemperatur) setzt der Zerfall der molekularen Struktur ein. Wärmestabilisatoren sollen dies verhindern. Unerlässlich sind diese für Polyvinylchlorid, das sonst, unter Bildung von HCl und u. U. gesundheitsschädlicher Zerfallprodukte, seine mechanische Stabilität einbüßen würde. Der Zerfallmechanismus verläuft über die Bildung von Doppelbindungen. Organische Barium-, Zink-, Zinn-, und Cadmiumverbindungen und anorganische Bleisalze komplexieren diese und unterbrechen so den Zerfallmechanismus. Vor allem die Bleiverbindungen stellen hinsichtlich der Entsorgung des Kunststoffs ein nicht unerhebliches Umweltproblem dar. Derzeit sind 80% der Wärmestabilisatoren auf der Basis von Blei. Die chemische Industrie ist zur Zeit allerdings bemüht, diese zu ersetzen. So wurde bei Cognis, einer Tochterfirma des Henkel-Konzerns, speziell für Fensterprofile ein Stabilisator auf der Basis von Calcium und Zink entwickelt.



Bei Bränden geht von Kunststoffen eine große Gefahr aus, da sie zum einen in der Lage sind die Brände zu unterhalten und zum anderen bei einer unkontrollierten Verbrennung giftige oder ätzende Gase, wie Blausäure, Kohlenstoffmonoxid, Chlorwasserstoff und Dioxine frei werden. Flammschutzmittel verhindern entweder den Sauerstoffzutritt zum Brand oder stören die chemischen Reaktionen (Radikalkettenmechanismen) der Verbrennung. Polycarbonate erfordern oft keine Flammschutzmittel, da als Löschmittel wirkendes Kohlendioxid ein Zerfallsprodukt des Polymers darstellt.



Wichtige Flammschutzmittel sind:



* polybromierte Diphenylether (PBDEs): setzen Radikale frei, welche die Zwischenprodukte des Brennvorgangs abfangen

* Aluminiumhydroxid (Al(OH)3): setzt Wassermoleküle frei

* Phosphorhaltige Verbindungen: bilden Phosphorsäuren, die eine Wasserabspaltung katalysieren

* Aluminiumtrihydrat (ATH)



Farbmittel



Die meisten Polymere sind in reiner Form farblos, farbig werden sie erst durch Zusatz von Farbmitteln. Man unterscheidet zwischen Farbstoffen (lösen sich auf molekularer Ebene im Polymer oder adsorbieren an der Oberfläche) und Pigmenten (unlösliche, meist anorganische Aggregate). Textilien färbt man praktisch ausschließlich mit Farbstoffen ein. Der weit überwiegende Teil der Kunststoffe wird allerdings mit Pigmenten gefärbt, da diese lichtechter und meist auch billiger sind. Wichtige Pigmente in diesem Bereich sind Rutil (weiß), Ruß (schwarz), Cobalt- oder Ultramarinblau, sowie Chromoxidgrün. Inzwischen ist auch der Einsatz von Effektpigmenten möglich, z. B. zeigen mit seltenen Erden dotierte Strontium-Aluminate ein intensives Nachtleuchten. Einsatzgebiete für derartig gefärbte Kunststoffe sind bei Dunkelheit leichter auffindbare Sicherheitsmarkierungen, Lichtschalter oder Taschenlampen.



Füllstoffe



Füllstoffe sind klassische Streckmittel, die so die Herstellung des Kunststoffs verbilligen. „Aktive Füllstoffe“ verbessern zusätzlich die mechanischen Eigenschaften des Materials. Wichtige Füllstoffe sind unter anderem: Kreide, Sand, Kieselgur, Glasfasern und -kugeln, Zinkoxid, Quarz, Holzmehl, Stärke, Graphit, Ruße und Talkum.







So, das ist jetzt aber 'ne ganze Menge an Infos - das sah bei Wikipedia gar nicht nach so viel aus.


Dieser Inhalt wurde ursprünglich auf Y! Answers veröffentlicht, einer Q&A-Website, die 2021 eingestellt wurde.
Loading...